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Abstract - Terrestrial water is commonly found at temperature levels at which a density extremum, or a 
trend towards an extremum, occurs. The buoyancy force, with an extremum, then may become very 
complicated, with local flow reversal and convective inversion. Density differences may then not be expressed 
linearly in temperature. Such flows are formulated here, calculating the buoyancy force from a density 
equation of state which is of very high accuracy, yet of simple form. The resulting equations of motion are 
applied to vertical plane flows in a porous medium. Several new parameters arise. However, a similarity 
formulation results for many interesting and practical applications, for a wide diversity of temperature 
conditions. Specific solutions are given for flow and transport for bounding temperature conditions at which 

local buoyancy force reversal as well as convective inversion occur. 

NOMENCLATURE 

b, similarity transformation function for inde- 
pendent variable, defined in equation (12) ; 

C, similarity transformation function for 
stream function, defined in equation (13); 

C,, . . Cq, arbitrary constants defined in equations 

(20921); 
C 5,. . . C1 rr arbitrary constants of integration; 

%p 

k 

K 

m, 

M, 

n, 

N, 

WC, 

PI 

49 

Q, 

R, 
Ra,, 

S, 
t, 
U, 
0, 
V, 

specific heat ; 
wall-to-environment temperature function 
defined in equation (15b); 
similarity stream function variable; 
acceleration of gravity ; 
environment temperature function defined 
in equation (15a); 
effective thermal conductivity of the satu- 
rated porous medium; 
permeability of porous material; 
exponent, in equation (35a); 
constant in equation (35a); 
power-law exponent in equation (27a); 
constant in equation (27a); 
local Nusselt number; 
pressure ; 
exponent in the density equation (4); 
energy of convected fluid in the boundary 
layer ; 
parameter defined in equation (22); 
local Rayleigh number defined in equation 

(28); 
salinity ; 
temperature; 
Darcy velocity in x direction; 
Darcy velocity in y direction ; 
vector velocity ; 

4 coordinate parallel to surface ; 

Y, coordinate normal to surface. 

Greek letters 

coefficient in the density equation (4); 
thermal-diffusivity ratio of matrix con- 
ductivity to fluid heat capacity; 
boundary-layer thickness ; 
independent similarity variable; 
viscosity of fluid; 
density ; 
normalized temperature; 
stream function. 

Subscripts 

; 
m, 

r, 
X, 
‘X, 

denotes point where flow reversal occurs; 
refers to convective fluid ; 
denotes quantities at extremum 
temperature ; 
denotes reference quantity; 
means differentiation with respect to x; 
denotes conditions at infinity. 

1. INTRODUCTION 

THE BUOYANCY induced motion of water through 

permeable material is an important mechanism of 

energy transport. In addition to considerable experim- 
ental work [l-5], there have been many theoretical 
studies as well [6-111. Minkowyn and Cheng [12], 
Cheng and Minkowycz [13], and Johnson and Cheng 
[ 141 have obtained a number of similarity solutions for 
free convection boundary-layer flow. In all past ana- 
lyses, the Boussinesq approximation, that the fluid 
density p varies linearly with temperature, is invoked. 
However, this is inapplicable for water at low tempera- 
tures. Recall the extremum at about 4°C in pure water 
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gravitational acceleration, s is the salinity level of the 
water. 

In writing equation (I), one Boussinesq approxi- 
mation resulting from A~/p << 1 is employed. How- 
ever, the buoyancy force in equation (2) is calculated 
from the new density equation (4), where p, and t, 
denote the maximum density and temperature for 
given pressure and salinity levels. The forms and values 
of q, a, p, and 1, are given in all detail by Gebhart and 
Mollendorf [18]. 

at 1 atm. Such conditions occur commonly in porous 
medium, such as permeable soils flooded by cold lake 
or sea water, water-ice slurries, etc. Sun and Tien [IS] 
have considered the convection of water as a non- 
Boussinesq fluid with a cubic polynomial 
density-temperature relationship. This study is a 
linear stability analysis. The results were restricted to 
conditions wherein the extremum temperature lies 
within the bounding temperatures, i.e. tr < t, < r2. 

The present paper uses both a more accurate and 
simpler density equation which applies to both pure 
and saline water to a pressure level of 1000 bars, to 
20°C. It is used to study vertical buoyancy driven plane 
flows imbedded in an extensive porous medium satu- 
rated with either pure or saline water under conditions 
in which density extremum might occur. The necessary 
and sufficient conditions for similarity solutions are 
determined. We take a Cartesian coordinate system 
with the origin at the leading edge of the flow, as shown 
in Fig. 1, where x increases in the downstream 
direction. 

For a vertical plane flow in a saturated porous 
medium, u and v are the downstream and normal 
components of the filtration velocity V. Darcy’s law (2) 
and the equation of the energy (3) are written as 

Some simplifying hypoth~es have been made: the 
saturating liquid and the porous layer are in local 
thermodynamic equilibrium; the physical properties 
of the fluid and the medium are isotropic and homo- 
geneous; the empirical Darcy’s law is assumed ; there is 
no salinity diffusion, and the Dufour and Soret effects 
are both taken as negligible, for small wall-to-ambient 
temperature differences. 

With these assumptions, the governing equations 
are given by : 

v.v=o, (1) 

v=f(PP-VP), (2) 

(p&V Vt = kV2 t, (3) 

P = P&, PIP - ah PI I t - US, f4 I”1 (4) 

where V is the vector of Darcy velocity, p and cP are the 
viscosity and specific heat of the convective fluid and pr 
is its density at a reference temperature. Also, K and k 
are, respectively, the permeability and the effective 
thermal conductivity of the saturated porous medium 
[16, 173, p and g are the fluid pressure and the 

where the plus sign in equation (5a) is for the 
coordinate system shown in Fig. l(b) and the minus 
sign is for that in Fig. l(a). For an impermeable surface 
at y = 0 with a prescribed temperature, the approp- 
riate boundary conditions are : 

at the surface: 

far from the surface, in a quiescent and stably stratified 
ambient medium : 

For other flows, such as in a plume, other conditions 
apply at y = 0. 

The pressure terms appearing in equation (5) are 
eliminated through cross-differentiation. Then the 
boundary-layer approximations in the study of free 
convection in porous layers are applied by assuming 
that the convection takes place within a thin layer 
adjacent to y = 0. They result in neglecting the 
changes of physical quantities, with respect to x+ 
compared to those with respect to y. With these 
considerations, equations (5) and (6) become 

at dt k a% pt 
u;5;+D;is;=~~=“l@. (10) 

/I 7- / Y 

.-Y 
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2. ANALYSIS 

u=~(+pg-$$, u= --:$, (5a,b) 

y=o, v=o, t=to; Ua, b) 

y-+x,, u=o, t=t,. @a, W 

Integrating equation (9) with respect toy and applying 
the boundary condition (8a), results in 

(0) Upfiow (b) Downflow 

FIG. 1. Coordinate systems for the two flow regimes: (a) 
upward flow, (b) downward How. or using the density equation of state (4) 
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u(x, y) = f Ka(s;p)pmq [ 1 t - t, p - ( t, - t, I’] 

(11) 

where the effect of pressure variation on density has 
been neglected and salinity is taken as uniform. This 
result indicates that the velocity u is directly pro- 
portional to the buoyancy force. Therefore, as shown 
in Fig. 3, in terms of the eventual similarity variables, 
the vertical velocity and the buoyancy force variations 
are of the same shape. Where local buoyancy force 
reversal occurs, flow reversal occurs (Fig. 5). Further- 
more, if equation (11) is applied at the surface, there is 
slip, since velocity u varies in the same manner as the 
buoyancy force. 

Equations (7a, b), (8b), (10) and (11) are the 
governing boundary layer equations and boundary 
conditions for buoyancy induced convection in a 
porous medium saturated with pure or saline water at 
low temperatures, up to 20°C. 

Similarity conditions 
Following the notation of Gebhart [19], we now 

define a transformation in terms of a similarity inde- 
pendent variable ~(x, y) and two similarity dependent 
variables,f(q) and 4(q) as follows : 

? = Y&l; (12) 

f(rl) = w, Yh c(x); (13) 

d(V) = (t - tcJl(& - t,) (14) 

where $(x,y) is the usual stream function, b and c are 
transformation functions to be determined to yield 
a similarity solution. We also define 

i(x) = t, - L d(x) = t, - t, (15a, b) 

where t, is a reference temperature and the surface 
temperature t, may be thought of as greater than the 
ambient temperature t, for a simpler physical in- 
terpretation of the results. 

Introducing these transformations into equations 
(10) and (11) results in 

f’= $K,CI[~~-R[~-IR/~], (16) 

f#r + C,j@ - CJ-‘4 - C‘J = 0. (17) 

The boundary conditions in terms of the similarity 
variables for a surface at y = 0 (q = 0), are 

q=o, 4=1, f=O, (I8a, b) 

V+E, f#l=o (19) 

where 

c, =g, c, =? 

cyg, c4 = $ W, b) 

and 

L - t, 
R=-. 

to - tee 
(224 

The necessary conditions for which similarity so- 
lutions exist are that the quantities C1, C,, C, and C4 
and the parameter R may be male independent of x. It 
is worth noting the important role of the quantity R. It 
places the prescribed temperatures to and t,, with 
respect to t,(s,p). It also indicates the local direction of 
the buoyancy force across the thermal region and thus, 
also the direction of flow. In a recent study of vertical 
natural convection flows in cold water, Gebhart and 
Mollendorf [20] have observed local buoyancy re- 
versals for R between 0 and 0.5. A detailed discussion 
of such reversals in porous layers will be given in the 
next section. 

One may prove that for C, # 0, R may be expressed 
in terms of C3 and C4 as: 

R = C4 ~ t, - t, + G Ax) + L - t, _ 

d(x) d(x) G d(x) 

VW 
where C, is a constant of integration. It is then 
concluded that R is independent of x if 

t, - t, + c, = 0. 

Thus, the reference temperature t, is given by 

t, = t, + c,. (23) 

Considering the equation (16), it is apparent that 
one approach in seeking possible similarity solutions is 
to examine particular cases based on the behavior of 
the parameter R, that is, on the specific variations of 
the surface temperature to and the ambient tempera- 
ture t,. The four following particular circumstances 
will be discussed : 

1. uniform ambient medium temperature t, and to 
variable ; 

2. both t, and to independent of x; 
3. t, variable and to constant; and 
4. both t, and to variable. 

1. Uniform ambient medium temperature t, and to 
variable 

In this condition to - t, = d(x) is a function of x. 
Note also that R appears alone in equation (16). 
Therefore, R [see equation (22)] will be independent of 
x if and only if t, is equal to t,. That is 

R = 0. (24) 

Then, from equations (20a, b) and (21a), an equation is 
obtained in terms of c. It may be integrated to give, 

c c’-4’_C X - 6 (25) 

where r = CJC, and C6 is a constant of integration. 
Exponential or power law variations of c with x result, 

depending on whether r = 2/q or r # 2/q. 
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l(a) Power-law variation with x. Integrating equa- 
tion (25) for r # 2/q yields, 

c(x) = (C,x + Cg)l’fZ-@‘! (26a) 

Then, from equations (21a, b) and (221, 

b@) = $(CYX + C*)‘W-W-W), (26b) 
1 

d(x) = F 
i > 

1. k 

(C,x + C,)‘“‘-qr) (26~) 

where 

C, = C,(2 - qr), 

and Cs, the constant of integration, is zero if the origin 
of the coordinate system is placed at the leading edge 
for flow. 

Similarity solutions. The constants of similarity C,, 
C2, C, and C4 and the constant of integration C,, are 
to be calculated. Since there are more unknowns than 
equations, the constants may be determined such that 
the similarity equations have a simple and yet general 
form. The actual bounding temperatures are often 
known. Therefore, some constants are calculated in 
terms of these specified conditions. Noting from 
equation (26~) that the wall-ambient temperature 
difference varies as a power-law variation with x, it 
may be assumed that 

d(x) = Nx” (27a) 

where N and n are constants. The expression of b and c 
become 

b(x) = ~(Ro,)‘~~, (2W 

c(x) = (Ra,)li2, (27~) 

where Ra, is a local Rayleigh number defined as 

Ra = Ws,p)Kp,gdqx 
x = pnr g 2adq. (28) 

P-1 

Equations (16) and (17) then become 

f’ = + 44, 

q + (nq f l)f@ - 2nf’4 = 0 

(29) 

where C, = l/K,, C2 = nq + 1, and C, = 2n. Pjote 
that the Prandtl number Pr = v/al does not appear 
alone in this formulation. 

The physical consistency of the above formulation is 
examined by considering a number of he$ 

1 
72 * (31):s 

transfer quantities. First, the energy comUcteu in the 
boundary layer at x, Q(x), is expressed as 

Q(x) = 11 C,P@ - t, )dy (30) 

s 

rx 
= a, cpprcd #f’ds z ,&‘x[“(2+@+11@, (31) 

0 

Second, the thermal boundary layer thickness S(x) is 
obtained from equation (12) as 

6(x) = rd/b z rjax’“q- l) I2 (32) 

where gn is a point where Q, might have a value of 0.01. 
Combining equations (27b, c) and (311, the convected 
energy will be constant or increasing with x for 
N > 0, that is, for t, > t ~, if in addition 

1 
n> --. 

2+q 

Similarly, the thermal boundary layer thickness must 
be constant or increase with x. This results for 
n 5 (l/q). Therefore, n must be restricted to the range 

1 1 
--<nS-. 

2+q 4 
(33) 

(b) ~xpone~~ju~ variuf~on with x. For r = 2/q, equa- 
tion (25) is integrated to give, 

c(x) = C, exp(C, x). (34a) 
Then, from equations (20a, b) and (21a), b and d 
become 

b(x) = F exp(C,x), 
2 

(34b) 

d(x) = (2 C, ‘C,)I’qexpf+.y) (34~) 

where C, is a constant of integration. 
S~~~~ari~~ solutions. From equation (34c), observing 

the exponential variation with x of the wall-ambient 
temperature difference, it may be assumed that 

d(x) = A4 exp(mx) (35a) 

where M and m are constants. Taking C, arbitrarily 
equal to I, b and c are, 

WW 

(35c) 

The similarity equations given by (16) and (17) are 

S’ = * #Jq, (36a) 

4” + qf@ - 2f ‘4 = 0 (36b) 

where C, = l/K,, C, = q, C, = 2. Again the Prandtl 
number does not appear. Equations (32) and (35b) 
indicate that the boundary layer thickness 6(x) is not 
zero at x = 0. Gebhart and Mollendorf point out the 
same characteristic in a study of viscous dissipation in 
external natural convection flows [27]. They conclude 
that the momentum and energy levels at the leading 
edge must be small compared to that existing at L, 
where L is the surface length for this formulation to 
accurately apply to such a flow downstream of x = L. 

2. Both t, and to independent of x 
From equation (22), R is then inde~ndent of x for 

any values oft,, t, and t,. This circumstance is similar 
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to the foregoing power law one, except that n in the 
equation (27a) is equal to zero, that is, t, - t, = d 
= N, a constant. Here R can take any real value. 
Therefore, proceeding as in the previous case, the 
following similarity equations may be obtained. For 
the power-law variation with x, they are 

I’= t[~#-R/4-/R~Gl, (37a) 

q +f@ = 0. (37b) 

It would appear that t, - t, = constant might also be 
accommodated by the exponential form (35a). HOV- 
ever, this would require m = 0, which is inadmissible 
in equation (35b, c). 

The expressions of b and c obtained in the previous 
section (equation 27b, c) are still valid. Because of the 
great practical interest in conditions for which t, and 
t, are constant, numerical solutions to equation (37a, 
b) have been obtained for a wide range of R. The results 
are discussed in the next section. 

3.t, is variable and t, is constant 
If the ambient medium is stratified, the parameter R 

can be made independent of x if and only if the surface 
temperature t, is equal to the extremum temperature 
t,. Thus 

R= 1. (38) 

Referring to the expression of the buoyancy force in 
equation (16), it may be seen that the resulting flow is 
always down. Before solving equations (20) and (21), it 
should be noted from equation (21 b), that the form of 
j(x) depends entirely on those of b, c and d, which have 
already been determined in equations (27a, b, c) and 
(35a, b,c). 
3(a) Power-law variation oft, with x. From equations 
(21b) and (27b,c), it may be shown that, 

co = -2% 

Then, j(x) becomes 

j(x) = -Nx” + c,, (39) 

where C 10=to-hi - C,. The similarity equations 
are 

f’ - (I - 4)’ + 1 = 0, Wa) 

4” + (nq + l)f& - 2nf’(4 - 1) = 0. (40b) 

For any solution to be realistic, any stratification of the 
ambient medium must be stable, since it is assumed 
quiescent in the boundary conditions (8a, b). 

A rough measure ofambient medium stability is that 
p, must be constant or decreasing upward, inde- 
pendent of the sign oft, - t,,. That is, (dp,/dx) 2 0 
for upflow and (dp,/dx) 2 0 for downflow. See Fig. 1. 
Now, 

dpx dp, dt, 
-- = dt dx = aq(t, - t,)4-1jX. 
dx p 

(41) 

Tllus, Pm is greater or equal to zero for j, greater or 
equal to zero. Therefore, from equations (33) and (39), 

the r~uirement that the environment is stable is that n 
is restricted to : 

1 
-- 

2+q 
<n<O. (42) 

(b) Exponential variation oft, with x. From C, = 2 
and from equation (22b), C4 = -2. Then j(x) is 
expressed as 

j(x) = -M exp(mx), (43) 

and the similarity equations as 

f’ - (1 - (b)q + 1 = 0, (44a) 

q + @-#’ - 2f’(# - I) = 0. (44b) 

The remarks on the thermal boundary-layer thickness 
in part l(b) also hold for this circumstance. 

4. Both t, and to variable 
This circumstance is similar to the one wherein the 

temperature to at y = 0 varies with x while the ambient 
temperature t, is constant. Here, solutions are limited 
by the permissible values of R. Also, the solutions must 
be restricted to those which result in a stable ambient 
medium. The solutions of this section, being the most 
general, also include the previous three circumstances. 
The definition of b and c will here remain the same. 

(a) Power-law variation with x. Noticing from 
equation (21b) that the variation ofj(x) with respect to 
x depends on the sign of Cq, let 

C, = 2nCk. 

Therefore, 

j(x) = C6Nx” + C, 1 (45) 

where C,, is a constant of integration that can be 
taken equal to zero since the reference temperature t, is 
defined within an arbitrary constant Cs. From equa- 
tions (22) and (30), C:, becomes 

Ck= -R. (46) 

j(x) is rewritten as 

j(x) = - RNx”. 

Since the value of R determines the direction of the 
flow, the range of values of n will depend on it, The 
similarity equations are given by 

f’=It[]+-RIq-IRJq] (474 

#” + (nq + I)f 4’ - 2nf ‘(4 - R) = 0. (47b) 

(b) Exponential variation with x. The stability of the 
medium depends on the constant of similarity C,. 
Taking arbitrarily C3 = 2 and from equation (22b), C4 
= -2R, j(x) can be expressed as 

j(x) = - RM exp(mx). 

The similarity equations are 

f’= ~[~+R~4-~R~qJ, 

4” + 4f&’ - 2f’(C#J - R) = 0. 

(48a) 

(48b) 



3. NUMERICAL CALCULATlONS FOR 
PURE WATER 

Numerical solutions have been obtained for equa- 
tion (37a, bf subject to boundary conditions given in 
equations (18) and (19), rewritten below. These equa- 
tions describe the circumstance of natural convection 
adjacent to an isothermal surface embedded in un- 
stratified saturated porous media. 

f’= f[/#-R/‘-/Ri@J* Wa) 

q +f#’ = 0, (37b) 

q=O, 4=1, f=O, (18) 

!f --+ X., f$ = 0. U9? 

Before discussing the computed results, the basic 
transport quantities of interest are determined, in 
terms of similarity variables, as follows : 

where 

where q” is the surface heat flux and Nu, is the local 
Nusselt number. The buoyancy force F is aIso of 
importance in determining the directian of the flow 
and, therefore, the choice of the coordinate system. 

F = Y(P I - PI. 

In terms of the simiIarity variables this becomes 

F = a<s,p)p,g@[ 14 - R j9 - ] R I”]. (48) 

From equation (37a), the tangential velocity is seen to 
be directly proportional to the buoyancy force, There- 
fore, local flow reversal occurs across the convective 

layer where F changes sign. The point where this 
occurs is called n,. It is determined from: 

The only reasonable solution of this equation is 

rPfPr,f = 2R. (49) 

Thus, for any given and admissible value of R, there 
may be a location g,, where the buoyancy force and 
tangential velocity are zero. The Row has opposite 
directions on opposite sides of this location in the 
thermal layer. Since the temperature distribution # 
decreases monotonically from 1 to 0, the values of R for 
which buoyancy and Row reversals will occur are in the 
range l/2 2 R 2 0, from equation (49). For R = l/2, F 
= 0 at the surface, as shown in Fig. 5. Further, for 
R f 0, F is upward and so is the ff ow. For R 2 l/Z, both 
are downward. 

The occurrence of a Iocal buoyancy-force reversal 
made the numerical convergence extremely stow on 
approaching R = 0.194 from R = 0, and on approach- 
ing R = 0.401 from R = 0.5. Convergence was not 
obtained for values of R in the range 0.195 < R < 0.40. 
In a study of natural convection about a vertical flat 
surface in cold water, Carey, Gebhart and Mollendorf 
[21] had similar difficulties and could not obtain 

0.6 

# 

FIG. ?. Distribution of the temperature variation, $+I), for selected vaIues of R. The Boussinesq results are 
computed from Cheng and Minkowycz [Is]. 
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FIG. 3. Distribution of the tangential component of velocity, f’, for selected values of R outside the buoyancy- 
reversal region. The solid lines are for downward flow, the broken lines for upward flow. 

convergence for R in the range 0.15 < R < 0.29. Local 
flow reversal at the surface first occurred for R near 
0.30. 

The boundary-layer approximations are question- 
able in bi-directional flows. These approximations rely 
on the condition that the changes in the physical 
quantities are small, with respect to x, compared to their 
changes with respect toy. Thus, au/ay is assumed large 
compared to &/ax, to result in equation (9). From an 
order of magnitude estimate, it may be shown that 

U/V = O(RU,)“~, 

and 

y/x = O(Ra,)- ‘I’. 

That is, the solutions are more reliable at increasing 
Ra,. Note that the Rayleigh number may be very large 
for any value of R even in the range O-1/2. 

4. RESULTS 

The equations (18), (19) and (36a, b) were integrated 
numerically by the Runge-Kutta method. The value of 
4’(O) was successively approximated by a shooting 
technique, for different values of R. Computations 
were first performed for R = &- 10, k4, f2, k3, k 1, 
kO.5 and 0, for q(s,p) = q(0, 1) = 1.894816. Resulting 
temperature distributions for R = - 16, f 10, f 4, + 2 
and + 1 are plotted in Fig. 2. The variation of the 
tangential component of the filtration velocity is 
shown in Fig. 3 for selected values of R. The normal 
velocity component is plotted in Fig. 4. In both Figs. 3 
and 4, the dashed curves represent upward flow. 

Then, the region where buoyancy-force reversals 
occur was investigated. Results were obtained for 

0 I R I 0.194 and 0.401 s R < 0.5. These values of R 

correspond to small flow reversals. Instability of the 
numerical routine resulted in the range 0.195 < R 

< 0.40, a region of large reversals. Convective in- 
version occurred in this range. In Fig. 5, the vertical 
velocity component is plotted for selected values of R 

across the range of local flow reversal. For R = 0.45, 
the reversal is seen to occur at q, = 0.40. Referring to 
Fig. 6, where temperature distribution for different 
values of R is plotted, &n, = 0.4) is seen to be equal to 
4(~,) = 0.90 = 2R. Figure 7 shows the very large 
variation of the heat transfer over the whole range of R 

for q&p) = q(0, 1) and for q(O,500). There is a large 
decrease in heat transfer as the buoyancy-force re- 
versal region is approached from each side. However, 
the effects of convective inversion on the form of the 
temperature distributions appear to be relatively 
small. 
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FE. 4. Distribution of the normal velocity component for selected R outside the buoyancy-reversal region. 
Solid lines represent downward flow and the broken lines, upward flow. 

FIG. 5. Calculated distribution of the velocity component parallel to the surface for selected R inside the 
buoyancy-reversal region. Solid curves are for downward flow, broken curves for upward flow. 
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FIG. 6. Calculated temperature distribution for selected 
values of R in the buoyancy-reversal region. 

3.0 - 

-$a 

2.0 - 
Increasing q 

R = -i6 corresponds to the Boussinesq 

4.0 

17 

approximation computed from Cheng and 
- Minkowycz [I31 

0.2 - 
0 , 

-46 -t2 -0 -4 0 4 

R = (t,-tJ/(t,-t,) 

_) 

FIG. 7. Heat transfer dependence on R for (g(s, p) = q(0, 1) = 1.894816 and q(O,SOO) = 1.727147. The arrow 
indicates increasing q. 
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TRANSPORT PAR GRAVITE DANS DES MILLIEUX POREUX SATURES D’EAU 
PURE OU SALINE A TEMPERATURE BASSE 

R&sum&L’eau terrestre se trouve frequemment B des niveaux de tempkrature tels qu’apparait l’influence de 
I’extremum de densitt. L’effet d’Archimtde devient alors compliqd, avec un renversement local de 
1’6coulement et une inversion de convection. Les diffkrences de densitC ne peuvent pas s’exprimer 
liniairement en fonction de la temperature. On btudie de tels lcoulements B partir d’une equation d’&at pour 
la densitk qui est d’une grande pr&cision, bien que de forme simple. Les Cquations de mouvement sont 
appliquies d des &oulements plans verticaux dans un milieu poreux. De nombreux parametres apparaissent. 
NCanmoins, une formulation concerne plusieurs applications intkressantes et pratiques pour une grande 

diversitt de conditions de tempbrature. Des solutions sp6cifiques sont donntes pour I’tcoulement et le 

transport avec des conditions aux limites de temptrature telles qu’apparaissent le renversement des forces 
d’Archimtde et I’inversion de la convection. 

TRANSPORT DURCH AUFTRIEB IN MIT REINEM ODER SALZHALTIGEN WASSER 
GESATTIGTEN PORtjSEN MEDIEN BE1 NIEDRIGEN TEMPERATUREN 

Zusammenfassung-Das Wasser auf der ErdoberflLhe hat gewiihnlich Temperaturen, bei denen ein 
Dichteextremum oder der Trend zu einem Extremum vorliegt. Die Abhlngigkeit der Auftriebskraft von der 
Temperatur kann in diesem Fall sehr kompliziert werden, wobei lokale StrGmungsumkehr und konvektive 
Inversion auftreten kiinnen. Dichteunterschiede kiinnen dann nicht mehr als lineare Funktion der 
Temperatur ausgedriickt werden. StrGmungen unter solchen Bedingungen werden hier behandelt, wobei die 
Auftriebskraft aus einer Zustandsgleichung fiir die Dichte berechnet wird, die sehr genau, aber trotzdem 
recht einfach ist. Die erhaltenen Gleichungen fiir den Transport werden auf vertikale ebene Stramungen in 
einem poriisen Medium angewandt. Dabei treten mehrere neue Parameter auf. Es ergibt sich jedoch eine 

,&hnlichkeitsliisung fiir viele interessierende praktische Anwendungsfille fiir eine groBe Vielfalt von 
Temperaturbedingungen. Spezielle Lijsungen fiir Stramung und Transport werden fiir Temperaturrand- 
bedingungen angegeben, bei denen lokale Umkehr der Auftriebskraft sowie konvektive Inversion auftreten. 

CBO6OfiHOKOHBEKTMBHOE fiBW)KEHME )KClflKOCTM B IlOPMCTblX CPEAAX. 
fIPOIlWTAHHbIX qMCTOn M COJIEHOR BOaOGi, fIPM HM3KMX TEMflEPATYPAX 

AHHoTamn --~ B 3eMublx ycnosuax sona saqacTym HBXO~.)(TCII npn raKoii lehlneparype. ~Or!:a 

Ha6nmp.ae’rca 3KcTpeMyM I(~A Tenaemuia K 3KcTpeMyMy ~JIOTHOCTH. npki 3~0~ netic-rsue nonbCMHori 

CH.“b, MO,KeT HOCMT O’KHb CJIOmHbIfi XapaKTep II COnpOBON,aTbCR JIOKanbHblM PCBCpCllpOBaHHCM 

“OTOKa A KOHBeKTHBHOti tiHBepCHefi. B 3TOM CJIyqae pa3HOCTb nJOTHOCTeti HeJIb OIlHCaTb IIkiHCfiHOii 

TeMnepaTypHOfi SaBHCHMOCTbH3. B CTaTbe IIaeTCIl @OpMynnpOBKa ypBHeHHfi WI!4 MKHX nOTOKOB. 

BenaqwHa nOn,,~MHOii CWlbl OqeHb TO’IHO Ii B TO XOZ BpeMS4 J$OBOJIbHO npOCT0 PaCCYMTblBacTCR H1 

ypaaHeHH,, COCTOIIHWI jI,Ifl n”OTHOCTH. c nOMOmb,O “OJIy’leHHblX ypaBHeHAi? MOXHO paCCWTblBaTb 

BepTnKa,,bHOe nByMepHOe TeqeHHe EAnKOCTW B nOpHCTOti Cpene. npS 7TOM IlOIlBJIRcTCIl HeCKOnbKO 

HOBblX “apaMeTpOB. OAHaKO pe3yJlbTaTb1, nOn,“KHHbIC C “OMOmbFJ TcOpRH nono6sn, MOryT HCllOJlb- 

30aaTbcs na npaKTBKe B unipoKoM neanasone TeMnepaTyp. flanbl qacTub,e pemeHun nna cnyqaea 

TeqeHHs A nepenoca MaccbI npa onpenenemiblx 3HaqemiRx TeMnepaTypbr. nprc KoTopbIx Ha6JlmndtoTCw 

“OKa.lbHOe HlMeHeHHe HanpaBJIeHW4 DefiCTBHff nOA%eMHOfi Cll.“bl A KOHBcKTUBHaR HHBepCW 


