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Abstract — Terrestrial water is commonly found at temperature levels at which a density extremum, or a
trend towards an extremum, occurs. The buoyancy force, with an extremum, then may become very
complicated, with local flow reversal and convective inversion. Density differences may then not be expressed
linearly in temperature. Such flows are formulated here, calculating the buoyancy force from a density
equation of state which is of very high accuracy, yet of simple form. The resulting equations of motion are
applied to vertical plane flows in a porous medium. Several new parameters arise. However, a similarity
formulation results for many interesting and practical applications, for a wide diversity of temperature
conditions. Specific solutions are given for flow and transport for bounding temperature conditions at which
local buoyancy force reversal as well as convective inversion occur.

NOMENCLATURE

similarity transformation function for inde-
pendent variable, defined in equation (12);
similarity transformation function for
stream function, defined in equation (13);

... C,, arbitrary constants defined in equations

(20, 21);

...C,,, arbitrary constants of integration;

specific heat;

wall-to-environment temperature function
defined in equation (15b);

similarity stream function variable;
acceleration of gravity;

environment temperature function defined
in equation (15a);

effective thermal conductivity of the satu-
rated porous medium;

permeability of porous material ;
exponent, in equation (35a);

constant in equation (35a);

power-law exponent in equation (27a);
constant in equation (27a);

local Nusselt number ;

pressure;

exponent in the density equation (4);
energy of convected fluid in the boundary
layer;

parameter defined in equation (22);

local Rayleigh number defined in equation
(28);

salinity;

temperature ;

Darcy velocity in x direction;

Darcy velocity in y direction;

vector velocity ;

X, coordinate parallel to surface;
A coordinate normal to surface.
Greek letters
o, coefficient in the density equation (4);
oy, thermal-diffusivity ratio of matrix con-
ductivity to fluid heat capacity;
d, boundary-layer thickness;
n, independent similarity variable;
U, viscosity of fluid;
D, density;
o, normalized temperature;
v, stream function.
Subscripts
c, denotes point where flow reversal occurs;
I refers to convective fluid;
m, denotes  quantities at  extremum
temperature;
r, denotes reference quantity;
X, means differentiation with respect to x;
o, denotes conditions at infinity.

1. INTRODUCTION

THE BUOYANCY induced motion of water through
permeable material is an important mechanism of
energy transport. In addition to considerable experim-
ental work [1-5], there have been many theoretical
studies as well [6-11]. Minkowycz and Cheng [12],
Cheng and Minkowycz [13], and Johnson and Cheng
(14] have obtained a number of similarity solutions for
free convection boundary-layer flow. In all past ana-
lyses, the Boussinesq approximation, that the fluid
density p varies linearly with temperature, is invoked.
However, this is inapplicable for water at low tempera-
tures. Recall the extremum at about 4°C in pure water
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at 1 atm. Such conditions occur commonly in porous
medium, such as permeable soils flooded by cold lake
or sea water, water—ice slurries, etc. Sun and Tien [ 15]
have considered the convection of water as a non-
Boussinesq fluid with a cubic polynomial
density—temperature relationship. This study is a
linear stability analysis. The results were restricted to
conditions wherein the extremum temperature lies
within the bounding temperatures, ie. t, <t, <t,.

The present paper uses both a more accurate and
simpler density equation which applies to both pure
and saline water to a pressure level of 1000 bars, to
20°C. Ttis used to study vertical buoyancy driven plane
flows imbedded in an extensive porous medium satu-
rated with either pure or saline water under conditions
in which density extremum might occur. The necessary
and sufficient conditions for similarity solutions are
determined. We take a Cartesian coordinate system
with the origin at the leading edge of the flow, as shown
in Fig. 1, where x increases in the downstream
direction.

Some simplifying hypotheses have been made: the
saturating liquid and the porous layer are in local
thermodynamic equilibrium; the physical properties
of the fluid and the medium are isotropic and homo-
geneous ; the empirical Darcy’s law is assumed ; there is
no salinity diffusion, and the Dufour and Sorét effects
are both taken as negligible, for small wall-to-ambient
temperature differences.

With these assumptions, the governing equations
are given by:

V-V=0, (1)
K
V=—(pg - Vp), 03]
#
(Prcy)s V -Vt = k¥4, 3)
p= p,,,(s,p)[l - (Z(S,p)'t - tm(59p)'q] (4)

where V is the vector of Darcy velocity, pand ¢, are the
viscosity and specific heat of the convective fluid and p,
is its density at a reference temperature. Also, K and &
are, respectively, the permeability and the effective
thermal conductivity of the saturated porous medium
[16, 17], p and g are the fluid pressure and the
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FiG. 1. Coordinate systems for the two flow regimes: (a)
upward flow, (b} downward flow,

J. M. RamiLisoN and B. GEBHART

gravitational acceleration, s is the salinity level of the
water,

In writing equation (1), one Boussinesq approxi-
mation resulting from Ap/p « 1 is employed. How-
evet, the buoyancy force in equation (2) is calculated
from the new density equation (4), where p,, and 1,
denote the maximum density and temperature for
given pressure and salinity levels. The forms and values
of g, a, p,, and r,, are given in all detail by Gebhart and
Mollendorf [18].

2. ANALYSIS

For a vertical plane flow in a saturated porous
medium, u and v are the downstream and normal
components of the filtration velocity V. Darcy’s law (2)
and the equation of the energy (3) are written as

K( 8p> K op
u=— j:p R ¥
TN 0x

=, (5a9b)
u dy

ot , ok fﬁﬁﬁ
" ox By (p,cp) | axt T ay?

where the plus sign in equation (5a) is for the
coordinate system shown in Fig. 1(b) and the minus
sign is for that in Fig. 1(a). For an impermeable surface
at y = 0 with a prescribed temperature, the approp-
riate boundary conditions are:

(6)

at the surface:

y=0, v=0, t=1tg (7a,b)

far from the surface, in a quiescent and stably stratified
ambient medium:

y=oc, u=0, t=t,. (8a, b)
For other flows, such as in a plume, other conditions
apply at y = 0.

The pressure terms appearing in equation (5) are
eliminated through cross-differentiation. Then the
boundary-layer approximations in the study of free
convection in porous layers are applied by assuming
that the convection takes place within a thin layer
adjacent to y = 0. They result in neglecting the
changes of physical quantities, with respect to x,
compared to those with respect to y. With these
considerations, equations (5} and (6) become

ou K op

g iy 9

oy T u oy ®
ot at k8% 2%t

e T e e T s —— 10
ARl S PPR I Rt

Integrating equation (9) with respect to y and applying
the boundary condition (8a), results in

K
u(x,y) = * gg(pw = P

or using the density equation of state {4)
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Kafs,p)pm
u(x,y) = i_a“(s:)p q[lt_tmlq_ |tﬂc —tM|q]
(11)

where the effect of pressure variation on density has
been neglected and salinity is taken as uniform. This
result indicates that the velocity u is directly pro-
portional to the buoyancy force. Therefore, as shown
in Fig. 3, in terms of the eventual similarity variables,
the vertical velocity and the buoyancy force variations
are of the same shape. Where local buoyancy force
reversal occurs, flow reversal occurs (Fig. 5). Further-
more, if equation (11) is applied at the surface, there is
slip, since velocity u varies in the same manner as the
buoyancy force.

Equations (7a, b), (8b), (10) and (11) are the
governing boundary layer equations and boundary
conditions for buoyancy induced convection in a
porous medium saturated with pure or saline water at
low temperatures, up to 20°C.

Similarity conditions

Following the notation of Gebhart [19], we now
define a transformation in terms of a similarity inde-
pendent variable 5(x, y) and two similarity dependent
variables, f(n) and ¢(n) as follows:

1 = yb(x); 12)
f(n) = ¥lx, y)oyc(x); (13)
o) = (6 — t)/(to — t) (14)

where /(x, y) is the usual stream function, b and ¢ are
transformation functions to be determined to yield
a similarity solution. We also define

d(x) =ty —t, (15a,b)

where ¢, is a reference temperature and the surface
temperature ¢, may be thought of as greater than the
ambient temperature t,, for a simpler physical in-
terpretation of the results.

Introducing these transformations into equations
(10) and (11) results in

f'=*K.C[|¢—R[*—|R]T], (16)
¢+ Cof ¢ — Caf'¢—Caf =0. (1)

The boundary conditions in terms of the similarity
variables for a surface at y = 0 (y = 0), are

J(x) el P

n=0, ¢=1, f=0, (18a,b)
n—-ow, ¢=0 (19)
where
K. = %6 PKpng
! Hoy
da c
C, =—, ==
1=% C, b (20a,b)
cd, 9]
C = — = Zx
3= 0 4= (21a,b)
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and

R=t"'_—-t;‘°
to — 1ty

(22a)

The necessary conditions for which similarity so-
lutions exist are that the quantities C,, C,, C3 and C,
and the parameter R may be ma-e independent of x. It
is worth noting the important role of the quantity R. It
places the prescribed temperatures t, and t,, with
respect to t,,(s, p). It also indicates the local direction of
the buoyancy force across the thermal region and thus,
also the direction of flow. In a recent study of vertical
natural convection flows in cold water, Gebhart and
Mollendorf [20] have observed local buoyancy re-
versals for R between 0 and 0.5. A detailed discussion
of such reversals in porous layers will be given in the
next section.

One may prove that for Cy # 0, R may be expressed
in terms of C; and C, as:

i
d(x)

Iy — Iy

d(x)

G

twm— 1, + Cs
G,

d(x)

(22b)

where Cg is a constant of integration. It is then
concluded that R is independent of x if

ty— 1, + Cs=0.
Thus, the reference temperature ¢, is given by

t, =ty +Cs. (23)

Considering the equation (16), it is apparent that
one approach in seeking possible similarity solutions is
to examine particular cases based on the behavior of
the parameter R, that is, on the specific variations of
the surface temperature t, and the ambient tempera-
ture t,. The four following particular circumstances
will be discussed:

1. uniform ambient medium temperature ¢ and ¢,
variable;

2. both t, and ¢, independent of x;

3. t, variable and t, constant; and

4. both ¢, and t, variable.

1. Uniform ambient medium temperature t, and t,
variable

In this condition t, — t, = d(x) is a function of x.
Note also that R appears alone in equation (16).
Therefore, R [see equation (22)] will be independent of
x if and only if ¢, is equal to ¢,. That is

R=0. 24)

Then, from equations (20a, b) and (21a), an equation is
obtained in terms of c. It may be integrated to give,

el T = C, (25)
where r = C;/C, and Cg is a constant of integration.

Exponential or power law variations of ¢ with x result,
depending on whether r = 2/g or r # 2/q.
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1(a) Power-law variation with x. Integrating equa-
tion (25) for r # 2/q yields,
e(x) = (Cyx + Cg)'"* ™"
Then, from equations (21a,b) and (22),

(26a)

b(x) = %—(ax + Cg)r= 0= (26

C ilg
d(x) = (C(‘: 5) (Cox + Cg¥' @™ (26¢)
2

where
C7 = C6(2 - qr)’

and Cg, the constant of integration, is zero if the origin
of the coordinate system is placed at the leading edge
for flow.

Similarity solutions. The constants of similarity C,,
C;, C; and C, and the constant of integration Cy, are
to be calculated. Since there are more unknowns than
equations, the constants may be determined such that
the similarity equations have a simple and yet general
form. The actual bounding temperatures are often
known. Therefore, some constants are calculated in
terms of these specified conditions. Noting from
equation (26c) that the wall-ambient temperature
difference varies as a power-law variation with x, it
may be assumed that

d{x} = Nx" (272)
where N and n are constants. The expression of b and ¢
become

bx) = 5 (Ra)', 7)

o(x) = (Ra,)'"?,

where Ra, is a local Rayleigh number defined as

(27¢c)

2a(s, p) K pgdix gxK
0, == —— e = p e

A ' 20d%.  (28)
Hay HXy
Equations (16) and (17) then become
fr==x9¢ 29)

"+ (ng+ 1) f¢' —2nf'¢ =0
where C, = 1/K,, C, =ng + 1, and C; = 2n. Note
that the Prandtl number Pr = v/a; does not appear
alone in this formulation.

The physical consistency of the above formulation is
examined by considering a number of hepfji ° (31
transfer quantities. First, the energy coni.uiea 1n the
boundary layer at x, Q{x), is expressed as

Q(x) = r c,pult — t,)dy {30)

0

.

= a,cpp,cdj' ¢f dy x Nxm@ra+iliz (31
0

Second, the thermal boundary layer thickness 6(x} is
obtained from equation (12) as

J. M. RamiLisoN and B. GEBHART

8(x) = ny/b oc yyxna= D 72 (32)

where #, is a point where ¢ might have a value of 0.01.
Combining equations (27b, ¢} and (31), the convected
energy will be constant or increasing with x for
N >0, that is, for o > 1., if in addition
1
nz ——.
2+¢
Similarly, the thermal boundary layer thickness must
be constant or increase with x. This results for
n < (1/q). Therefore, n must be restricted to the range

1

e < <
2+¢g

1
—. (33)
q

(b) Exponential variation with x. For r = 2/q, equa-
tion (25} is integrated to give,

c(x) = Cq exp(Cg x). (34a)
Then, from equations (20a,b) and (21a), b and d
become

bix) = 2 expl(Cov), (34b)
2

C e 2C
d(x) = ( et RO 2C6> exp ( == x) (34c)
&) .4
where C, is a constant of integration.
Similarity solutions. From equation (34c), observing
the exponential variation with x of the wall-ambient

temperature difference, it may be assumed that
d(x) = M exp(mx) (35a)

where M and m are constants. Taking C, arbitrarily
equal to 1, b and ¢ are,

=" mq
b(x) = > exp( 5 x),

c(x) = exp (?x)

(35b)

(35¢)

The similarity equations given by (16) and (17) are
Ji=x¢ (36a)

" +af¢'=2f'd=0 (36b)

where C, = 1/K,, C, = g, C; = 2. Again the Prandtl
number does not appear. Equations {32) and (35b)
indicate that the boundary layer thickness 8(x) is not
zero at x = 0. Gebhart and Mollendorf point out the
same characteristic in a study of viscous dissipation in
external natural convection flows [27]. They conclude
that the momentum and energy levels at the leading
edge must be small compared to that existing at L,
where L is the surface length for this formulation to
accurately apply to such a flow downstream of x = L.

2. Both t,. and t, independent of x
From equation (22), R is then independent of x for
any values of ¢4, 1, and ¢,,. This circumstance is similar
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to the foregoing power law one, except that n in the
equation (27a) is equal to zero, that is, to — 1, =d
= N, a constant. Here R can take any real value.
Therefore, proceeding as in the previous case, the
following similarity equations may be obtained. For
the power-law variation with x, they are

f'=+[]¢—-RI"~|R]], (37a)
¢ +f¢' =0 (37b)

It would appear that t, — t_,, = constant might also be
accommodated by the exponential form (35a). How-
ever, this would require m = 0, which is inadmissible
in equation (35b, ¢).

The expressions of b and ¢ obtained in the previous
section (equation 27b, c) are still valid. Because of the
great practical interest in conditions for which ¢, and
t,. are constant, numerical solutions to equation (37a,
b} have been obtained for a wide range of R. Theresults
are discussed in the next section.

3.t is variable and t, is constant

If the ambient medium is stratified, the parameter R
can be made independent of x if and only if the surface
temperature ¢, is equal to the extremum temperature
t.. Thus

R=1 (38)

Referring to the expression of the buoyancy force in
equation (16), it may be seen that the resulting flow is
always down. Before solving equations (20) and (21), it
should be noted from equation (21b), that the form of
j(x) depends entirely on those of b, ¢ and d, which have
already been determined in equations (27a,b, ¢} and
(35a,b,c).

3(a) Power-law variation of t,. with x. From equations
{21b) and (27b,¢), it may be shown that,

C4 = —2”.
Then, j{x) becomes

Jx)= —Nx"+ Cy, (39)

where Cyy =ty — t,, — Cs. The similarity equations
are

=l =-¢F+1=0, (40a)
¢"+(ng+ 1)fod' —2nf"(¢p — 1) =0. (40b)

For any solution to be realistic, any stratification of the
ambient medium must be stable, since it is assumed
quiescent in the boundary conditions (8a, b).

A rough measure of ambient medium stability is that
P must be constant or decreasing upward, inde-
pendent of the sign of t, — ... That is, (dp,./dx) < 0
for upflow and (dp ,,/dx) > 0 for downflow. See Fig. 1.
Now,

dp., - dp,, dt,,

o = aq(tm - toc)q—ljr

dx de, dx @1

Thus, p., is greater or equal to zero for j, greater or
equal to zero. Therefore, from equations (33) and (39),
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the requirement that the environment is stable is that n
is restricted to:
: <n<0 (42)
——<n<0
2+¢q
(b) Exponential variation of t,, with x. From C; = 2
and from equation (22b), C, = —2. Then j{x) is
expressed as

j(x) = — M exp(mx), (43)

and the similarity equations as
f=(—-¢y+1=0, (44a)
¢"+afd' - 2f(¢-1)=0. (44b)

The remarks on the thermal boundary-layer thickness
in part 1(b) also hold for this circumstance.

4. Both t,, and t, variable

This circumstance is similar to the one wherein the
temperature ¢y at y = 0 varies with x while the ambient
temperature t, is constant. Here, solutions are limited
by the permissible values of R. Also, the solutions must
be restricted to those which result in a stable ambient
medium. The solutions of this section, being the most
general, also include the previous three circumstances.
The definition of b and ¢ will here remain the same.

{a) Power-law variation with x. Noticing from
equation (21b) that the variation of j(x) with respect to
x depends on the sign of Cg, let

C, = 2nC,,.
Therefore,
j(x) = C4Nx" + C,, (45)

where C,, is a constant of integration that can be
taken equal to zero since the reference temperaturet, is
defined within an arbitrary constant Cs. From equa-
tions (22) and (30), C; becomes
C,= -R. (46)
j(x) is rewritten as
j{(x)= —RNx"

Since the value of R determines the direction of the
flow, the range of values of n will depend on it. The
similarity equations are given by

f'==x[l¢—R|"—|R|T] (47a)
¢" + (ng + 1)f ¢’ — 2nf'(¢ — R) = 0. (47b)

(b} Exponential variation with x. The stability of the
medium depends on the constant of similarity C,.
Taking arbitrarily C; = 2 and from equation (22b), C,
= —2R, j(x) can be expressed as

J(x) = — RM exp(mx).
The similarity equations are
f'=+[l¢—R|"~|R]],
" +afd'—~2f(¢ - R)=0.

(48a)
(48b)
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3. NUMERICAL CALCULATIONS FOR
PURE WATER

Numerical solutions have been obtained for equa-
tion {37a, b) subject to boundary conditions given in
equations {18) and (19), rewritten below, These equa-
tions describe the circumstance of natural convection
adjacent to an isothermal surface embedded in un-
stratified saturated porous media.

f=x[lé-R["—|R[] (37a)
¢ +f' =0, (37h)

=0, ¢=1 f=0, (18)
n- %, ¢=0. (19)

Before discussing the computed results, the basic
transport quantities of interest are determined, in
terms of similarity variables, as follows:

) = o L
X
R 1iZ
—v{x,y) =, L;”) f=nf
X
_ q”X . ——q}"(()) 172
N“"k(ro—rf.)‘[ 2 }(R“")

where
1 Ly
n==(Ra?L
2 X

where ¢” is the surface heat flux and Nu, is the local
Nusselt number. The buoyancy force F is also of
importance in determining the direction of the flow
and, therefore, the choice of the coordinate system.

J. M. Raminson and B, GEBHART

F=glp, —p).

In terms of the similarity variables this becomes
F=a(s,p)pmgd’[|¢ — R* = [R]?].  (48)

From equation (37a), the tangential velocity is seen to
be directly proportional to the buoyancy force. There-
fore, local flow reversal occurs across the convective
layer where F changes sign. The point where this
occurs is called #,. It is determined from:

F=0=als, pyp &L ¢(n) ~ RI* — |R]].

The only reasonable solution of this equation is

$(n.) = 2R (49)

Thus, for any given and admissible value of R, there
may be a location n,, where the buoyancy force and
tangential velocity are zero. The flow has opposite
directions on opposite sides of this location in the
thermal layer. Since the temperature distribution ¢
decreases monotonically from 1 to 0, the values of R for
which buoyancy and flow reversals will occur are in the
range 1/2 > R > 0, from equation {(49). For R = /2, F
== § at the surface, as shown in Fig. 5. Further, for
R < 0,Fisupward and sois the flow. For R > 1/2, both
are downward.

The occurrence of a local buoyancy-force reversal
made the numerical convergence extremely slow on
approaching R = 0.194 from R = 0, and on approach-
ing R = 0401 from R = 0.5. Convergence was not
obtained for values of R in the range 0.195 < R < 0.40,
In a study of natural convection about a vertical flat
surface in cold water, Carey, Gebhart and Mollendorf{
[21] had similar difficulties and could not obtain

06

02

i .
—?-;—_-;;= -16 & Boussinesq ,~40,10,~4,4,-2,2 ~{,1

FiG. 2. Distribution of the temperature variation, ¢{n), for selected values of R. The Boussinesq results are
computed from Cheng and Minkowycz [13}.
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1o—Teo

tm—too
\ R=-2—"":0,1,-1,3,-3,4,~4

F1G. 3. Distribution of the tangential component of velocity, f’, for selected values of R outside the buoyancy-
reversal region. The solid lines are for downward flow, the broken lines for upward flow.

convergence for R in the range 0.15 < R < 0.29. Local
flow reversal at the surface first occurred for R near
0.30.

The boundary-layer approximations are question-
able in bi-directional flows. These approximations rely
on the condition that the changes in the physical
quantities are small, with respect to x, compared to their
changes with respect to y. Thus, du/dy is assumed large
compared to dv/dx, to result in equation (9). From an
order of magnitude estimate, it may be shown that

u/v = O(Ra,)'?,
and
y/x = O(Ra,) ™2

That is, the solutions are more reliable at increasing
Ra,. Note that the Rayleigh number may be very large
for any value of R even in the range 0-1/2.

4. RESULTS

The equations (18), (19) and (36a, b) were integrated
numerically by the Runge—Kutta method. The value of
¢’'(0) was successively approximated by a shooting
technique, for different values of R. Computations
were first performed for R = +10, +4, +2, +3, +1,
+0.5 and 0, for q(s, p) = q(0, 1) = 1.894816. Resulting
temperature distributions for R = —16, +10, +4, +2
and +1 are plotted in Fig. 2. The variation of the
tangential component of the filtration velocity is
shown in Fig. 3 for selected values of R. The normal
velocity component is plotted in Fig. 4. In both Figs. 3
and 4, the dashed curves represent upward flow.

Then, the region where buoyancy-force reversals
occur was investigated. Results were obtained for

0 <R <0.194 and 0.401 < R <0.5. These values of R
correspond to small flow reversals. Instability of the
numerical routine resulted in the range 0.195<R
<040, a region of large reversals. Convective in-
version occurred in this range. In Fig. 5, the vertical
velocity component is plotted for selected values of R
across the range of local flow reversal. For R = 0.45,
the reversal is seen to occur at . = 0.40. Referring to
Fig. 6, where temperature distribution for different
values of R is plotted, ¢(n. = 0.4) is seen to be equal to
¢(n.) =~ 090 = 2R. Figure 7 shows the very large
variation of the heat transfer over the whole range of R
for g(s,p) = q(0,1) and for ¢(0,500). There is a large
decrease in heat transfer as the buoyancy-force re-
versal region is approached from each side. However,
the effects of convective inversion on the form of the
temperature distributions appear to be relatively
small.

Acknowledgements — Mr. J. Ramilison acknowledges sup-
port for his studies and research from the African-American
Institute. The second author wishes to acknowledge support
for this research under National Science Foundation Grant
ENG 77-21641.

REFERENCES

1. M. Combarnous and B. Lefur, Transfert de chaleur par
convection naturelle dans une couche poreuse horizon-
tale, C. r. hebd. Seanc. Acad. Sci. Paris L269, 1009-1012
(1969).

2. J. W. Elder, Steady free convection in a porous medium
heated from below, J. Fluid Mech. 27, 29-48 (1967).

3. T.Kaneko, M. F. Mohtadi and K. Aziz, An experimental
study of natural convection in inclined porous media, Int.
J. Heat Mass Transfer 17, 485-496 (1974).



1528 J. M. RaMiLIsON and B. GEBHART

\\

|

|
i

|

|

|

|

-t
T:-4,4,-3,3,-1,1
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buoyancy-reversal region. Solid curves are for downward flow, broken curves for upward flow.
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FiG. 6. Calculated temperature distribution for selected
values of R in the buoyancy-reversal region.

R=-146 corresponds to the B q
approximation computed from Cheng ond
Minkowycz [13]
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F1G. 7. Heat transfer dependence on R for (g(s, p) = q(0, 1) = 1.894816 and (0, 500) = 1.727147. The arrow
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TRANSPORT PAR GRAVITE DANS DES MILLIEUX POREUX SATURES D'EAU
PURE OU SALINE A TEMPERATURE BASSE

Résumé—L’eau terrestre se trouve fréquemment a des niveaux de température tels qu'apparait Pinfluence de
I'extremum de densité. L'effet d’Archiméde devient alors compliqué, avec un renversement local de
I'écoulement et une inversion de convection. Les différences de densité ne peuvent pas s’exprimer
linéairement en fonction de la température. On étudie de tels écoulements a partir d’une équation d’état pour
la densité qui est d’une grande précision, bien que de forme simple. Les équations de mouvement sont
appliquées a des écoulements plans verticaux dans un milieu poreux. De nombreux parameétres apparaissent.
Néanmoins, une formulation concerne plusieurs applications intéressantes et pratiques pour une grande
diversité de conditions de température. Des solutions spécifiques sont données pour I’écoulement et le
transport avec des conditions aux limites de température telles qu'apparaissent le renversement des forces
d’Archimede et I'inversion de la convection.

TRANSPORT DURCH AUFTRIEB IN MIT REINEM ODER SALZHALTIGEN WASSER
GESATTIGTEN POROSEN MEDIEN BEI NIEDRIGEN TEMPERATUREN

Zusammenfassung—Das Wasser auf der Erdoberfliche hat gewohnlich Temperaturen, bei denen ein
Dichteextremum oder der Trend zu einem Extremum vorliegt. Die Abhédngigkeit der Auftriebskraft von der
Temperatur kann in diesem Fall sehr kompliziert werden, wobei lokale Strémungsumkehr und konvektive
Inversion auftreten konnen. Dichteunterschiede konnen dann nicht mehr als lineare Funktion der
Temperatur ausgedriickt werden. Stromungen unter solchen Bedingungen werden hier behandelt, wobei die
Auftriebskraft aus einer Zustandsgleichung flir die Dichte berechnet wird, die sehr genau, aber trotzdem
recht einfach ist. Die erhaltenen Gleichungen fiir den Transport werden auf vertikale ebene Stromungen in
einem pordsen Medium angewandt. Dabei treten mehrere neue Parameter auf. Es ergibt sich jedoch eine
Ahnlichkeitsiésung fiir viele interessierende praktische Anwendungsfille fiir eine groBe Vielfalt von
Temperaturbedingungen. Spezielle Losungen fiir Stromung und Transport werden fiir Temperaturrand-
bedingungen angegeben, bei denen lokale Umkehr der Auftriebskraft sowie konvektive Inversion auftreten.

CBOBOJHOKOHBEKTUBHOE JBMXKEHHUE XUIKOCTU B ITOPUCTBIX CPENAX,
MPOMMUTAHHBIX YACTOM U COJIEHOH BOJOW, MPU HU3KHUX TEMMEPATYPAX

AHHOTAUHA —— B 3eMHBIX YCIIOBHAX BOOA 3a4acTyH0 HAXOAHTCH [IpH

rakoW TemnepaType. KOInia

Hab1I012€ TCA IKCTPEMYM MM TEHIECHLHS K IKCTPEMYMY NMIOTHOCTH. [1pu 3TOM nelcTBHE MOABEMHOH
CHJIBI MOXET HOCHT OYEHb CJOXHBIH XapaKTep M COMPOBOXIATbCA JIOKAJbHBIM PEBEPCHPOBAHHEM
OTOKA H KOHBEKTHBHOMN MHBepcHedl. B 3TOM ciiyuae pa3HOCTb MIOTHOCTER HENb3s ONKUCATh JIMHEAHOH
TEMNEPATYPHOH 3aBUCUMOCThIO. B craThe maeTcs popMyJHMpOBKa YPaBHEHHMH U1t TaKHX MOTOXOB.
BenuunHa NOABEMHOM CH/IBI OYEHL TOYHO M B TO € BPEMSA JOBOJILHO MPOCTO PACCYHTBHIBAETCS M3
ypaBHEHUsSt COCTOSHMS Uit NAOTHOCTH. C NOMOUIBIO MONYYEHHBIX YPABHEHHH MOXHO PACCYMTHIBATHL
BEPTHKAJILHOE JBYMEPHOE TeYeHHe XHIKOCTH B NOPHUCTOil cpende. Ilpu 3TOM MOABISETCS HECKOLKO
HOBBIX MapameTpoB. OAHAKO Pe3ybTaThl, NOJTYyHYEHHBIC C TOMOLILIO TEOPHH NOJ00MA, MOTYT HCNONb-
30BATHCS HA NPAKTHKE B IUMPOKOM [Hana3zoHe TeMnepaTyp. aHbl 4acTHble pPEIUEHHA N8 Clydaes
TeueHHs M NEPEHOCA MACCHI [IPH OTPeesICHHbIX 3HAYEHHAX TeMMepaTyphbl, [IpH KOTOPHIX HabromatoTCs
JNIOKAJLHOE M3MEHEHME HANPABJIEHHS AEHCTBHA NMOXBEMHON CHIIBI U KOHBEKTHBH4S HHBEPCHS.



